Everywhere differentiability of infinity harmonic functions
نویسندگان
چکیده
منابع مشابه
Differentiability Almost Everywhere
1. In this paper we will give necessary and sufficient conditions for a measurable function to be equivalent to one which is differentiable a. e. on a set E. The condition is in terms of Marcinkiewicz type integrals which have also been recently the main objects in problems of differentiability. The reader is especially referred to the important paper on differentiability by E. M. Stein and A. ...
متن کاملAn Introduction of Infinity Harmonic Functions
This note serves as a basic introduction on the analysis of infinity harmonic functions, a subject that has received considerable interests very recently. The author discusses its connection with absolute minimal Lipschitz extension, present several equivalent characterizations of infinity harmonic functions. He presents the celebrated theorem by R. Jensen [17] on the uniqueness of infinity har...
متن کاملA Remark on C Infinity-harmonic Functions
In this paper, we prove that any nonconstant, C2 solution of the infinity Laplacian equation uxiuxj uxixj = 0 can not have interior critical points. This result was first proved by Aronsson [2] in two dimensions. When the solution is C4, Evans [6] established a Harnack inequality for |Du|, which implies that non-constant C4 solutions have no interior critical points for any dimension. Our metho...
متن کاملExtending Infinity Harmonic Functions by Rotation
If u(x, y) is an infinity harmonic function, i.e., a viscosity solution to the equation −∆∞u = 0 in Ω ⊂ Rm+1 then the function v(x, z) = u(x, ‖z‖) is infinity harmonic in the set {(x, z) : (x, ‖z‖) ∈ Ω} (provided u(x,−y) = u(x, y)).
متن کاملPhragmén–lindelöf Theorem for Infinity Harmonic Functions
We investigate a version of the Phragmén–Lindelöf theorem for solutions of the equation ∆∞u = 0 in unbounded convex domains. The method of proof is to consider this infinity harmonic equation as the limit of the p-harmonic equation when p tends to ∞.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Calculus of Variations and Partial Differential Equations
سال: 2011
ISSN: 0944-2669,1432-0835
DOI: 10.1007/s00526-010-0388-1